Design of CPW-Fed Antenna with Defected Substrate for Wideband Applications

نویسندگان

  • Amar Sharma
  • Puneet Khanna
  • Kshitij Shinghal
  • Arun Kumar
چکیده

In this paper, a novel design of CPW-Fed defected substrate microstrip antenna is presented. The proposed antenna shows wideband applications by choosing suitable defected crown shape substrate. Defected shape substrate also reduces the size of the antenna. The radiating patch of proposed antenna is taken in the form of extended U-shape. The space around the radiator is utilized by extending the ground plane on both sides of radiator. Simulation of proposed antenna is performed through Ansoft’s High Frequency Structure Simulator (HFSS) and simulated results shows balanced agreement with measured results. The prototype is taken with dimensions 36 mm × 42 mm ×1.6 mm that achieves good return loss, constant group delay and good radiation patterns over the entire operating bandwidth from 4.5 to 13.5 GHz (9.0 GHz) with 100% impedance bandwidth at 9.0 GHz centre frequency. Thus, the proposed antenna is applicable for C and X band applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CPW-Fed Circularly Polarized Slot ANTENNA with Elliptical-Shaped Patch for UWB Applications

A new design of coplanar waveguide (CPW)-fed antenna with circular polarization (CP) and excellent impedance matching is presented. In this design a pair of circular-shaped slits is applied to opposite corners of the slot for enhancing the impedance matching and realizes bandwidth of 134.43% across 2.98-15.20 GHz for VSWR≤2. Furthermore this structure exhibits axial ration bandwidth (ARBW) of 3...

متن کامل

A Capacitive Fed Microstrip Patch Antenna with Air Gap for Wideband Applications (RESEARCH NOTE)

In this paper a microstrip antenna on a suspended substrate with capacitive feed is presented. capacitive feed is created by a slot within the rectangular patch around the feed point. The proposed antenna exhibits a much higher impedance bandwidth of about 47% (S11 < −10 dB). Effects of key design parameters such as the air gap between the substrate and the ground plane, the gap width between r...

متن کامل

New Low Cost Printed Antenna CPW-Fed for Global Positioning System, Personal Communication System and Worldwide Interoperability for Microwave Access Band Applications (TECHNICAL NOTE)

This paper presents a new design of a CPW-Fed multi bands planar antenna. This antenna can be integrated easily with passive and active elements. The proposed antenna is suitable to operate for GPS, PCS and WiMAX bands. Its entire area is 52.3x52.6mm2 and is employed on an FR-4 epoxy substrate and fed by a 50 Ohm coplanar line. The antenna parameters have been analyzed and optimized by using AD...

متن کامل

Design of A Compact CPW-FED UWB Antenna with WiMAX and WLAN Band-Notched Characteristic Evaluated in AHP Framework

In this article, we present a new design of a coplanar waveguide fed (CPW-fed) ultra-wideband (UWB) antenna with dual band-notched characteristics. Two notched frequency bands are achieved by using two inverted U-shaped stepped impedance resonators. The proposed antenna can operate from 2.82 to 11 GHz (118%), defined by VSWR< 2, except two notched bands around 3.5 GHz (WiMAX) and 5.5 GHz (WLAN)...

متن کامل

Miniaturized Triple Wideband CPW-Fed Patch Antenna With a Defected Ground Structure for WLAN/WiMAX Applications

A coplanar waveguide (CPW)-fed patch antenna with triple wideband is presented for simultaneously satisfying Wireless Local Area Network (WLAN) and Worldwide Interoperability for Microwave Access (WiMAX) applications. The proposed antenna mainly consists by three radiating elements: inverted L-shaped Stub1, inverted L-shaped Stub2, and a rectangle Stub3 with a defected ground structure for band...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Electrical and Computer Engineering

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016